ECG diagnosis for arrhythmia detection with a cloud-based service and a wearable sensor network in a smart city environment
Frontiers in Sustainable Cities, ISSN: 2624-9634, Vol: 4
2022
- 3Citations
- 22Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Irregular heartbeats are a primary indicator of Cardiovascular Disease (CVD), which is the leading cause of death in a developing smart city environment. Wearable devices can reliably monitor cardiac beats by producing Electrocardiogram (ECG) readings. The considerable value gained from a wireless wearable system allows for remote ECG assessment with continuous real-time functionality. The data collected from the wearable sensor network in the smart city platform gives timely alarms and treatment that could save lives. Cloud-based ECG methods can be accurate to a certain extent, as latency is still an existing problem. Cloud-based portals linked immediately to wearable devices can provide numerous advantages, such as reduced latency and a good level of service. Therefore, a novel cloud-based arrhythmia detection using the Recurrent Neural Network (RNN) (NC-RNN) method has been proposed for the ECG diagnosis with a wearable sensor in the smart city environment. The ECG signal collected from the wearable sensor involves three phase diagnosis stage. R-peak detection techniques are used for preliminary diagnostics in edge devices. The ECG signals are then classified using RNN at the edge device, with the severity of irregular beat detected in the ECG signal. Finally, a cloud platform classification method can evaluate the obtained ECG signals. While the proposed method's training session is runnable on the technically rich Cloud data centers, the interpretation unit is deployed over the cloud infrastructure for evaluating the ECG signals and setting off the emergency remedies with minimum latency. The simulation results of the suggested framework can accomplish effective ECG detection via wearable devices with high accuracy and less latency.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85142712494&origin=inward; http://dx.doi.org/10.3389/frsc.2022.1073486; https://www.frontiersin.org/articles/10.3389/frsc.2022.1073486/full; https://dx.doi.org/10.3389/frsc.2022.1073486; https://www.frontiersin.org/journals/sustainable-cities/articles/10.3389/frsc.2022.1073486/full
Frontiers Media SA
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know