PlumX Metrics
Embed PlumX Metrics

cavsiopy: a Python package to calculate and visualize spacecraft instrument orientation

Frontiers in Astronomy and Space Sciences, ISSN: 2296-987X, Vol: 10
2023
  • 2
    Citations
  • 0
    Usage
  • 4
    Captures
  • 1
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    2
  • Captures
    4
  • Mentions
    1
    • News Mentions
      1
      • News
        1

Most Recent News

Studies Conducted at Department of Physics and Engineering Physics on Astronomy and Space Sciences Recently Published (cavsiopy: a Python package to calculate and visualize spacecraft instrument orientation)

2023 NOV 09 (NewsRx) -- By a News Reporter-Staff News Editor at NewsRx Science Daily -- Research findings on astronomy and space sciences are discussed

Article Description

Spacecraft attitude plays an important role in the observations of various atmospheric, planetary, and terrestrial parameters and phenomena that are of interest to the scientific community. Precise measurements from imagers, particle sensors, and antennas require accurate knowledge of instrument orientation. cavsiopy is an easy-to-install and use, light-weight open-source Python package for researchers who need to consider instrument pointing direction and observation geometry. cavsiopy contains the coordinate transformation routines and the corresponding rotation matrices from the spacecraft orbital reference frame (ORF) to any of the geocentric equatorial inertial for epoch J2000 (GEI J2K)/International Celestial Reference Frame (ICRF), Earth-centered, Earth-fixed (ECEF), International Terrestrial Reference Frame (ITRF), geodetic north-east-down, and geocentric north-east-center coordinate systems. Additionally, cavsiopy includes routines for importing Swarm-E ephemeris and generic two-line-element (TLE) data files; for the calculation of spacecraft azimuth, elevation, and orbital parameters; as well as for the 2D/3D visualization of the geometry between the instrument and the target. Functionality and utilization of cavsiopy for research problems are demonstrated with examples and visualizations for the Radio Receiver Instrument (RRI) and the Fast Auroral Imager (FAI) of e-POP/Swarm-E.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know