Prediction of the Complication Risk in Drug-Resistant Tuberculosis After Surgery: Development and Assessment of a Novel Nomogram
Frontiers in Surgery, ISSN: 2296-875X, Vol: 8, Page: 689742
2021
- 10Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures10
- Readers10
- 10
Article Description
Background: Surgery is increasingly accepted as an adjunctive approach to treat multidrug-resistant tuberculosis (MDR-TB) or extensively drug-resistant tuberculosis (XDR-TB). However, a model that includes all factors to predict the risk of postoperative complications is lacking. Methods: We developed a prediction model based on 138 patients who had undergone surgery as treatment for drug-resistant tuberculosis (DR-TB) after 24 months. Clinical features on the lesion type (L), treatment history (T), physiologic status of the body (B), and surgical approach (S) were evaluated. Multivariable logistic regression analysis was conducted by clinical features selected in the least absolute shrinkage and selection operator (LASSO) to build a nomogram. The discrimination, calibration, and clinical usefulness of the nomogram were assessed using the C-Index, calibration plots, and decision curves. Internal validation was assessed using bootstrapping. Results: The nomogram contained the features L, B, T, cavitary, recurrent chest infection (RCI) and MDR-TB/XDR-TB. The model displayed good discrimination with a C-Index of 0.879 (95% CI: 0.799–0.967). A high C-Index of 0.824 was achieved in the interval validation. Decision-curve analysis showed that the nomogram was clinically useful if intervention was decided at the non-adherence possibility threshold of 4%. Conclusion: Our novel nomogram could be used conveniently to predict postoperative complication risk in DR-TB patients.
Bibliographic Details
Frontiers Media SA
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know