The effect of nanoparticle shape and microchannel geometry on fluid flow and heat transfer in a porous microchannel
Symmetry, ISSN: 2073-8994, Vol: 12, Issue: 4
2020
- 17Citations
- 37Captures
- 2Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent Blog
Karimipour Saga III: All roads lead to Rome
"The academic career of D'Orazio is tightly coupled to that of Karimipour since she hosted him at Sapienza. Of the 57 papers she declared authorship for, 25 (44%) are published together with Karimipour." - Maarten van Kmapen
Article Description
Microchannels are widely used in electrical and medical industries to improve the heat transfer of the cooling devices. In this paper, the fluid flow and heat transfer of water-Al2O3 nanofluids (NF) were numerically investigated considering the nanoparticle shape and different cross-sections of a porous microchannel. Spherical, cubic, and cylindrical shapes of the nanoparticle as well as circular, square, and triangular cross-sections of the microchannel were considered in the simulation. The finite volume method and the SIMPLE algorithm have been employed to solve the conservation equations numerically, and the k-" turbulence model has been used to simulate the turbulence fluid flow. The models were simulated at Reynolds number ranging from 3000 to 9000, the nanoparticle volume fraction ranging from 1 to 3, and a porosity coefficient of 0.7. The results indicate that the average Nusselt number (Nu) increases and the friction coefficient decreases with an increment in the Re for all cases. In addition, the rate of heat transfer in microchannels with triangular and circular cross-sections is reduced with growing Re values and concentration. The spherical nanoparticle leads to maximum heat transfer in the circular and triangular cross-sections. The heat transfer growth for these two cases are about 102.5% and 162.7%, respectively, which were obtained at a Reynolds number and concentration of 9000 and 3%, respectively. However, in the square cross-section, the maximum heat transfer increment was obtained using cylindrical nanoparticles, and it is equal to 80.2%.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know