PlumX Metrics
Embed PlumX Metrics

Coupling persulfate-based AOPs: A novel approach for piroxicam degradation in aqueous matrices

Water (Switzerland), ISSN: 2073-4441, Vol: 12, Issue: 6
2020
  • 26
    Citations
  • 0
    Usage
  • 25
    Captures
  • 1
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    26
    • Citation Indexes
      26
  • Captures
    25
  • Mentions
    1
    • Blog Mentions
      1
      • Blog
        1

Article Description

The activated persulfate degradation of piroxicam, a non-steroidal anti-inflammatory drug (NSAID) belonging to oxicams, was investigated. Persulfate was activated with thermal energy or (UV-A and simulated solar) irradiation. Using 250 mg/L sodium persulfate at 40 °C degraded almost completely 0.5 mg/L of piroxicam in 30 min. Increasing piroxicam concentration from 0.5 to 4.5 mg/L decreased its removal. The observed kinetic constant was increased almost ten times from 0.077 to 0.755 min, when the temperature was increased from 40 to 60 °C, respectively. Process eciency was enhanced at pH 5-7. At ambient conditions and 30 min of irradiation, 94.1% and 89.8% of 0.5 mg/L piroxicam was removed using UV-A LED or simulated solar radiation, respectively. Interestingly, the use of simulated sunlight was advantageous over UV-A light for both secondary effluent, and 20 mg/L of humic acid solution. Unlike other advanced oxidation processes, the presence of bicarbonate or chloride in the range 50-250 mg/L enhanced the degradation rate, while the presence of humic acid delayed the removal of piroxicam. The use of 0.5 and 10 g/L of methanol or tert-butanol as radical scavengers inhibited the reaction. The coupling of thermal and light activation methods in dierent aqueous matrices showed a high level of synergy. The synergy factor was calculated as 68.4% and 58.4% for thermal activation (40 °C) coupled with either solar light in 20 mg/L of humic acid or UV-A LED light in secondary effluent, respectively.

Bibliographic Details

Antonios Stathoulopoulos; Dionissios Mantzavinos; Zacharias Frontistis

MDPI AG

Biochemistry, Genetics and Molecular Biology; Social Sciences; Agricultural and Biological Sciences; Environmental Science

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know