An Energy-Aware Load Balancing Method for IoT-Based Smart Recycling Machines Using an Artificial Chemical Reaction Optimization Algorithm
Algorithms, ISSN: 1999-4893, Vol: 16, Issue: 2
2023
- 4Citations
- 18Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Researcher's Work from Islamic Azad University Focuses on Algorithms (An Energy-Aware Load Balancing Method for IoT-Based Smart Recycling Machines Using an Artificial Chemical Reaction Optimization Algorithm)
2023 MAR 07 (NewsRx) -- By a News Reporter-Staff News Editor at Math Daily News -- New research on algorithms is the subject of a
Article Description
Recycling is very important for a sustainable and clean environment. Developed and developing countries are both facing the problem of waste management and recycling issues. On the other hand, the Internet of Things (IoT) is a famous and applicable infrastructure used to provide connection between physical devices. It is an important technology that has been researched and implemented in recent years that promises to positively influence several industries, including recycling and trash management. The impact of the IoT on recycling and waste management is examined using standard operating practices in recycling. Recycling facilities, for instance, can use IoT to manage and keep an eye on the recycling situation in various places while allocating the logistics for transportation and distribution processes to minimize recycling costs and lead times. So, companies can use historical patterns to track usage trends in their service regions, assess their accessibility to gather resources, and arrange their activities accordingly. Additionally, energy is a significant aspect of the IoT since several devices will be linked to the internet, and the devices, sensors, nodes, and objects are all energy-restricted. Because the devices are constrained by their nature, the load-balancing protocol is crucial in an IoT ecosystem. Due to the importance of this issue, this study presents an energy-aware load-balancing method for IoT-based smart recycling machines using an artificial chemical reaction optimization algorithm. The experimental results indicated that the proposed solution could achieve excellent performance. According to the obtained results, the imbalance degree (5.44%), energy consumption (11.38%), and delay time (9.05%) were reduced using the proposed method.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know