Fixed-Wing UAV Formation Path Planning Based on Formation Control: Theory and Application
Aerospace, ISSN: 2226-4310, Vol: 11, Issue: 1
2024
- 2Citations
- 7Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Study Findings from Zhejiang University Update Knowledge in Unmanned Aerial Vehicle (Fixed-Wing UAV Formation Path Planning Based on Formation Control: Theory and Application)
2024 JAN 04 (NewsRx) -- By a News Reporter-Staff News Editor at Defense & Aerospace Daily -- Investigators publish new report on unmanned aerial vehicle.
Article Description
Formation path planning is a significant cornerstone for unmanned aerial vehicle (UAV) swarm intelligence. Previous methods were not suitable for large-scale UAV formation, which suffered from poor formation maintenance and low planning efficiency. To this end, this paper proposes a novel millisecond-level path planning method appropriate for large-scale fixed-wing UAV formation, which consists of two parts. Instead of directly planning paths independently for each UAV in the formation, the proposed method first introduces a formation control strategy. It controls the chaotic UAV swarm to move as a single rigid body, so that only one planning can obtain the feasible path of the entire formation. Then, a computationally lightweight Dubins path generation method with a closed-form expression is employed to plan feasible paths for the formation. During flight, the aforementioned formation control strategy maintains the geometric features of the formation and avoids internal collisions within the formation. Finally, the effectiveness of the proposed framework is exemplified through several simulations. The results show that the proposed method can not only achieve millisecond-level path planning for the entire formation but also excellently maintain formation during the flight. Furthermore, simple formation obstacle avoidance in a special case also highlights the application potential of the proposed method.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know