Spatialization of actual grain crop yield coupled with cultivation systems and multiple factors: From survey data to grid
Agronomy, ISSN: 2073-4395, Vol: 10, Issue: 5
2020
- 6Citations
- 12Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The spatialization of actual grain crop yield helps to understand the spatial heterogeneity of yield and support for the precise farming and targeted farmland management. However, inadequate consideration and quantification of anthropogenic factors affecting the estimation of actual yield distribution easily cause uncertainties in recent researches. Here, we developed a new grain crop yield spatialization (GCYS) model in order to downscale the yield from county to grid scale. The GCYS model is composed of four modules: (a) cultivated land Net Primary Productivity (NPP) calculation module, (b) comprehensive agricultural system construction module, (c) key factors establishment module, and (d) integration and validation module. Its novelty is to realize the actual grain crop yield spatialization from county scale to grid scale by quantifying and spatializing the comprehensive agricultural system when considering the diversity of cultivated structure and field management factors. Taking Guizhou and Guangxi Karst Mountains Region as a study-area, the GCYS model is developed and tested. The determination coefficients of regression analysis between agricultural survey data and spatialization results of paddy rice yield calculated by our model reach 0.72 and 0.76 in 2000 and 2015, respectively (p < 0.01). The results visualize the spatial pattern of actual grain crop yield at the grid scale, which show a gradually decreasing trend from southeast to northwest. With an increase in potential yield and improvement of field management technologies, the actual average yield of grain crops per unit increased form 4745.10 kg/ha of 2000 to 5592.89 kg/ha of 2015. Especially in high-yield zones in southeast area, mechanized cultivation became the dominated factor, rather than chemical fertilizer application. This demonstrates that our model can provide a reference for agricultural resource utilization and policymaking.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know