Novel Assessment of Region-Based CNNs for Detecting Monocot/Dicot Weeds in Dense Field Environments
Agronomy, ISSN: 2073-4395, Vol: 12, Issue: 5
2022
- 9Citations
- 22Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Weeding operations represent an effective approach to increase crop yields. Reliable and precise weed detection is a prerequisite for achieving high-precision weed monitoring and control in precision agriculture. To develop an effective approach for detecting weeds within the red, green, and blue (RGB) images, two state-of-the-art object detection models, EfficientDet (coefficient 3) and YOLOv5m, were trained on more than 26,000 in situ labeled images with monocot/dicot classes recorded from more than 200 different fields in Denmark. The dataset was collected using a high velocity camera (HVCAM) equipped with a xenon ring flash that overrules the sunlight and minimize shadows, which enables the camera to record images with a horizontal velocity of over 50 km h-1. Software-wise, a novel image processing algorithm was developed and utilized to generate synthetic images for testing the model performance on some difficult occluded images with weeds that were properly generated using the proposed algorithm. Both deep-learning networks were trained on in-situ images and then evaluated on both synthetic and new unseen in-situ images to assess their performances. The obtained average precision (AP) of both EfficientDet and YOLOv5 models on 6625 synthetic images were 64.27% and 63.23%, respectively, for the monocot class and 45.96% and 37.11% for the dicot class. These results confirmed that both deep-learning networks could detect weeds with high performance. However, it is essential to verify both the model’s robustness on in-situ images in which there is heavy occlusion with a complicated background. Therefore, 1149 in-field images were recorded in 5 different fields in Denmark and then utilized to evaluate both proposed model’s robustness. In the next step, by running both models on 1149 in-situ images, the AP of monocot/dicot for EfficientDet and YOLOv5 models obtained 27.43%/42.91% and 30.70%/51.50%, respectively. Furthermore, this paper provides information regarding challenges of monocot/dicot weed detection by releasing 1149 in situ test images with their corresponding labels (RoboWeedMap) publicly to facilitate the research in the weed detection domain within the precision agriculture field.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know