Classification of Monofloral Honeys by Measuring Electrical Impedance Based on Neural Networks
Agronomy, ISSN: 2073-4395, Vol: 12, Issue: 8
2022
- 3Citations
- 10Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The study of electrical impedance applied to food has become a method with great potential for use in the food industry, which allows the monitoring and control of quality processes in a safe and non-invasive way. Recent research has shown that this technique can be an alternative method to determine the floral origin of the honey bee (Apis mellifera L.) and acquire information on chemical and physical properties such as conductivity, ash content and acidity. In this work, the electrical impedance of six monofloral honey samples from diverse origins and one commercial multi-floral honey were measured using a low-cost impedance meter, obtaining 101 samples (reactance (X) versus resistance (R)), with a frequency sweep between 1 Hz and 25 MHz in all the honeys analyzed. This shows that it is possible, by using a multilayer neural network trained from these data, to classify with 100% accuracy between these honeys and, thereby, quickly and easily determine the floral origin of the honey. This is without the need to use the chemical data or equivalent electrical models.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know