ViT-SmartAgri: Vision Transformer and Smartphone-Based Plant Disease Detection for Smart Agriculture
Agronomy, ISSN: 2073-4395, Vol: 14, Issue: 2
2024
- 23Citations
- 72Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Invading pests and diseases always degrade the quality and quantity of plants. Early and accurate identification of plant diseases is critical for plant health and growth. This work proposes a smartphone-based solution using a Vision Transformer (ViT) model for identifying healthy plants and unhealthy plants with diseases. The collected dataset of tomato leaves was used to collectively train Vision Transformer and Inception V3-based deep learning (DL) models to differentiate healthy and diseased plants. These models detected 10 different tomato disease classes from the dataset containing 10,010 images. The performance of the two DL models was compared. This work also presents a smartphone-based application (Android App) using a ViT-based model, which works on the basis of the self-attention mechanism and yielded a better performance (90.99% testing) than Inception V3 in our experimentation. The proposed ViT-SmartAgri is promising and can be implemented on a colossal scale for smart agriculture, thus inspiring future work in this area.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know