Managing Residue Return Increases Soil Organic Carbon, Total Nitrogen in the Soil Aggregate, and the Grain Yield of Winter Wheat
Agronomy, ISSN: 2073-4395, Vol: 14, Issue: 7
2024
- 1Citations
- 3Captures
- 2Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent Blog
Agronomy, Vol. 14, Pages 1584: Managing Residue Return Increases Soil Organic Carbon, Total Nitrogen in the Soil Aggregate, and the Grain Yield of Winter Wheat
Agronomy, Vol. 14, Pages 1584: Managing Residue Return Increases Soil Organic Carbon, Total Nitrogen in the Soil Aggregate, and the Grain Yield of Winter Wheat
Most Recent News
Study Findings from Weifang University of Science and Technology Update Knowledge in Agronomy (Managing Residue Return Increases Soil Organic Carbon, Total Nitrogen in the Soil Aggregate, and the Grain Yield of Winter Wheat)
2024 AUG 06 (NewsRx) -- By a News Reporter-Staff News Editor at Agriculture Daily -- Current study results on have been published. According to news
Article Description
Soil tillage and maize residues return are important practices for tackling and promoting soil quality and improving crop yield in the North China Plain (NCP), where winter wheat production is threatened by soil deterioration. Although maize residues incorporation with rotary tillage (RS) or deep plowing tillage (DS) is widespread in this region, only few studies have focused on rotation tillage. Four practices, namely RT (continuous rotary tillage without maize residues return), RS, DS, and RS/DS (rotary tillage every year and deep plowing interval of 2 years), were evaluated under field conditions lasting a period of 5 years. After a 5-year field experiment, the mean soil bulk density of the 0–30 cm soil layer decreased significantly with RS, DS, and RS/DS, i.e., by 4.19%, 6.33%, and 6.71% compared with RT, respectively. The treatments greatly improved the total soil porosity, soil aggregate size distribution, soil aggregate stability, and the root length density in the 0–30 cm soil layers. Residues return with DS and RS/DS treatments significantly increased the soil organic carbon (SOC) and total nitrogen (TN) storage in the 0–30 cm soil layer, mainly owed to the increases in the SOC and TN pool associated with the macro-aggregate. A positive trend in the grain yield was noted under both DS and RS/DS conditions, whereas a decreasing tendency was presented in continuous rotary treatments. In summary, RS/DS treatment significantly increased the amount of SOC and TN, improved the particle size distribution of soil aggregates, and thus improved the soil’s physicochemical properties, which is beneficial for wheat to achieve high yields. Our results suggested that RS/DS was a highly efficient practice to improve soil quality and increase crop production in the NCP.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know