Exploring optimal tillage improved soil characteristics and productivity of wheat irrigated with different water qualities
Agronomy, ISSN: 2073-4395, Vol: 9, Issue: 5
2019
- 32Citations
- 42Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Irrigation with low water quality can adversely affect soil characteristics, optimal moisture for tillage, and crop productivity, particularly in arid and semi-arid regions. We determined the optimal moisture for tillage processing and the effects of optimal and wet tillage on physical and chemical soil characteristics and wheat productivity after irrigation with different water qualities (waste, saline, and highly saline water). We used the Atterberg limit to determine the suitable moisture content for tillage. Tillage at optimal moisture content improved soil characteristics by reducing soil salinity, sodicity, bulk density, shear strength, compaction, and increasing hydraulic conductivity compared to that of wet tillage. It also enhanced growth and productivity of wheat grown with low quality of water (i.e., fresh and waste water), resulting in higher grain yield and root weight at different growth stages than that of saline and highly saline water. In conclusion, tillage at optimal moisture content alleviates the impact of salinity through improving soil physical and chemical characteristics. Optimum tillage can be applied at 20 and 24 days from the previous irrigation in saline and highly saline soils, respectively. Irrigation with waste water resulted in a higher wheat grain yield than saline and highly saline water.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know