PlumX Metrics
Embed PlumX Metrics

Artificial Intelligence Algorithms for Discovering New Active Compounds Targeting TRPA1 Pain Receptors

AI (Switzerland), ISSN: 2673-2688, Vol: 1, Issue: 2, Page: 276-285
2020
  • 6
    Citations
  • 0
    Usage
  • 12
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    6
    • Citation Indexes
      6
  • Captures
    12

Article Description

Transient receptor potential ankyrin 1 (TRPA1) is a ligand-gated calcium channel activated by cold temperatures and by a plethora of electrophilic environmental irritants (allicin, acrolein, mustard-oil) and endogenously oxidized lipids (15-deoxy-∆12, 14-prostaglandin J2 and 5, 6-eposyeicosatrienoic acid). These oxidized lipids work as agonists, making TRPA1 a key player in inflammatory and neuropathic pain. TRPA1 antagonists acting as non-central pain blockers are a promising choice for future treatment of pain-related conditions having advantages over current therapeutic choices A large variety of in silico methods have been used in drug design to speed up the development of new active compounds such as molecular docking, quantitative structure-activity relationship models (QSAR), and machine learning classification algorithms. Artificial intelligence methods can significantly improve the drug discovery process and it is an attractive field that can bring together computer scientists and experts in drug development. In our paper, we aimed to develop three machine learning algorithms frequently used in drug discovery research: feedforward neural networks (FFNN), random forests (RF), and support vector machines (SVM), for discovering novel TRPA1 antagonists. All three machine learning methods used the same class of independent variables (multilevel neighborhoods of atoms descriptors) as prediction of activity spectra for substances (PASS) software. The model with the highest accuracy and most optimal performance metrics was the random forest algorithm, showing 99% accuracy and 0.9936 ROC AUC. Thus, our study emphasized that simpler and robust machine learning algorithms such as random forests perform better in correctly classifying TRPA1 antagonists since the dimension of the dependent variables dataset is relatively modest.

Bibliographic Details

Dragos Paul Mihai; Cosmin Trif; Gheorghe Stancov; Denise Radulescu; George Mihai Nitulescu

MDPI AG

Computer Science

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know