A novel optimization layout method for clamps in a pipeline system
Applied Sciences (Switzerland), ISSN: 2076-3417, Vol: 10, Issue: 1
2020
- 31Citations
- 12Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This paper proposes a novel optimization layout method for supporting clamps in a pipeline system. In this method, the global sensitivity analysis based on the Sobol method is presented to determine the influence of clamp position on the first-order frequency difference, the maximum vibration response displacement, and the maximum vibration stress. The modeling density of the finite element calculation is determined, and then a surrogate model of the relationship between the optimized input and the output is established through the neural network. The optimized position and orientation of the clamp are obtained by the genetic algorithm. Finally, a typical pipeline with clamps are conducted as an example to verify the effectiveness of the proposed optimization method. The simulations were compared with the experiment, and the result shows that the proposed optimization method can reduce the vibration of the pipeline system significantly, thus providing a new method for the arrangement of clamps in pipeline system.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know