Mechanical properties and characteristics of the anterolateral and collateral ligaments of the knee
Applied Sciences (Switzerland), ISSN: 2076-3417, Vol: 10, Issue: 18
2020
- 22Citations
- 39Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Biomechanical studies assessing the major knee ligaments, such as the anterior cruciate ligament, posterior cruciate ligament, medial collateral ligament (MCL), and lateral collateral ligament (LCL), have been conducted using various methodologies. However, despite the anterolateral ligament (ALL) being regarded as the important ligament for the stability of the knee, a lack of biomechanical research focusing on the ALL exists to date. Moreover, studies assessing the relative mechanical properties of each ligament of the knee are insufficient. Therefore, this study examined the mechanical properties of the ALL, MCL, and LCL and considered the relative differences between these ligaments. Twenty-one fresh cadaver knees were chosen to investigate the mechanical properties. The width, thickness, and length were measured. The stiffness, ultimate load, and elastic modulus were also tested. The MCL showed the greatest ultimate load (498.5 N) and the highest stiffness (71.97 N/mm), and the ALL presented the smallest ultimate load (146.64 N) and lowest stiffness (42.62 N/mm). Meanwhile, the LCL was second concerning the ultimate load (263.22 N) and stiffness (69.70 N/mm). The elastic modulus of the LCL (493.86 MPa) was greater than those of both the MCL and ALL (326.75 MPa and 345.27 MPa, respectively). There was no difference between the sides according to the different properties of all the ligaments. A sex difference was apparent only concerning the ultimate load for all the ligaments. Each ligament showed similar stiffness irrespective of its size; for this reason, stiffness should be considered initially and while conducting biomechanical simulations of these ligaments.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know