PlumX Metrics
Embed PlumX Metrics

Hybrid ga-socp approach for placement and sizing of distributed generators in dc networks

Applied Sciences (Switzerland), ISSN: 2076-3417, Vol: 10, Issue: 23, Page: 1-18
2020
  • 7
    Citations
  • 0
    Usage
  • 6
    Captures
  • 1
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    7
    • Citation Indexes
      7
  • Captures
    6
  • Mentions
    1
    • Blog Mentions
      1
      • 1

Most Recent Blog

Applied Sciences, Vol. 10, Pages 8616: Hybrid GA-SOCP Approach for Placement and Sizing of Distributed Generators in DC Networks

Applied Sciences, Vol. 10, Pages 8616: Hybrid GA-SOCP Approach for Placement and Sizing of Distributed Generators in DC Networks Applied Sciences doi: 10.3390/app10238616 Authors: Oscar

Article Description

This research addresses the problem of the optimal location and sizing distributed generators (DGs) in direct current (DC) distribution networks from the combinatorial optimization. It is proposed a master–slave optimization approach in order to solve the problems of placement and location of DGs, respectively. The master stage applies to the classical Chu & Beasley genetic algorithm (GA), while the slave stage resolves a second-order cone programming reformulation of the optimal power flow problem for DC grids. This master–slave approach generates a hybrid optimization approach, named GA-SOCP. The main advantage of optimal dimensioning of DGs via SOCP is that this method makes part of the exact mathematical optimization that guarantees the possibility of finding the global optimal solution due to the solution space’s convex structure, which is a clear improvement regarding classical metaheuristic optimization methodologies. Numerical comparisons with hybrid and exact optimization approaches reported in the literature demonstrate the proposed hybrid GA-SOCP approach’s effectiveness and robustness to achieve the global optimal solution. Two test feeders compose of 21 and 69 nodes that can locate three distributed generators are considered. All of the computational validations have been carried out in the MATLAB software and the CVX tool for convex optimization.

Bibliographic Details

Oscar Danilo Montoya; Walter Gil-González; Luis Fernando Grisales-Noreña

MDPI AG

Materials Science; Physics and Astronomy; Engineering; Chemical Engineering; Computer Science

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know