Mechanical and acoustic emission (AE) characteristics of rocks under biaxial confinements
Applied Sciences (Switzerland), ISSN: 2076-3417, Vol: 11, Issue: 2, Page: 1-20
2021
- 21Citations
- 11Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The surrounding rocks of underground engineering are generally subjected to a biaxial compressive stress condition. The failure properties of rocks under such a stress condition are wor-thy of being studied to ensure the stability of surrounding rock. This study aims to investigate the mechanical characteristics and acoustic emission (AE) properties of granite, marble, and sandstone in biaxial compression tests. Under biaxial confinements, it is evident that the elastic moduli of the three types of rocks decrease, and the plasticity increases monotonously with the increase of the intermediate principal stress σ2. As σ2 increases, the biaxial compressive strength σbcs of rock increases initially and subsequently decreases. The lateral strain ε2 of rock under biaxial confinement is controlled by both σ1 and σ2, and the restrain degree in the development of microcracks and the constrain extent in the expansion along the direction of σ2 are both enhanced gradually with increase in σ2. The sharp increase points of AE hit and AE count indicate that the failure will occur soon. The AF-RA distribution of AE signals shows that the increase of σ2 causes more tensile cracks in rock. According to the dip failure angle of macro-cracks in rock under biaxial confinement, the failure modes of granite and marble are slabbing, while failure mode of sandstone is shear. In addition, the σ2 has a positive effect on the mass ratio of large size fragments after rock failure. An exponent relationship between the σbcs and σ2 was found, and the inner apices–inscribed Drucker–Prager cri-terion can be used to predict the σbcs of rock.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know