Inter-subject meg decoding for visual information with hybrid gated recurrent network
Applied Sciences (Switzerland), ISSN: 2076-3417, Vol: 11, Issue: 3, Page: 1-12
2021
- 4Citations
- 6Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
As an effective brain signal recording technique for neuroscience, magnetoencephalography (MEG) is widely used in cognitive research. However, due to the low signal-to-noise ratio and the structural or functional variabilities of MEG signals between different subjects, conventional methods perform poorly in decoding human brain responds. Inspired by deep recurrent network for processing sequential data, we applied the gated recurrent units for MEG signals processing. In the paper, we proposed a hybrid gated recurrent network (HGRN) for inter-subject visual MEG decoding. Without the need of any information from test subjects, the HGRN effectively distinguished MEG signals evoked by different visual stimulations, face and scrambled face. In the leave-one-out cross-validation experiments on sixteen subjects, our method achieved better performance than many existing methods. For more in-depth analysis, HGRN can be utilized to extract spatial features and temporal features of MEG signals. These features conformed to the previous cognitive studies which demonstrated the practicality of our method for MEG signal processing. Consequently, the proposed model can be considered as a new tool for decoding and analyzing brain MEG signal, which is significant for visual cognitive research in neuroscience.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know