Study of statistical text representation methods for performance improvement of a hierarchical attention network
Applied Sciences (Switzerland), ISSN: 2076-3417, Vol: 11, Issue: 13
2021
- 2Citations
- 18Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
To effectively process textual data, many approaches have been proposed to create text representations. The transformation of a text into a form of numbers that can be computed using computers is crucial for further applications in downstream tasks such as document classification, document summarization, and so forth. In our work, we study the quality of text representations using statistical methods and compare them to approaches based on neural networks. We describe in detail nine different algorithms used for text representation and then we evaluate five diverse datasets: BBCSport, BBC, Ohsumed, 20Newsgroups, and Reuters. The selected statistical models include Bag of Words (BoW), Term Frequency-Inverse Document Frequency (TFIDF) weighting, Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA). For the second group of deep neural networks, Partition-Smooth Inverse Frequency (P-SIF), Doc2Vec-Distributed Bag of Words Paragraph Vector (Doc2Vec-DBoW), Doc2Vec-Memory Model of Paragraph Vectors (Doc2Vec-DM), Hierarchical Attention Network (HAN) and Longformer were selected. The text representation methods were benchmarked in the document classification task and BoW and TFIDF models were used were used as a baseline. Based on the identified weaknesses of the HAN method, an improvement in the form of a Hierarchical Weighted Attention Network (HWAN) was proposed. The incorporation of statistical features into HAN latent representations improves or provides comparable results on four out of five datasets. The article presents how the length of the processed text affects the results of HAN and variants of HWAN models.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know