Formulas for Uniaxial Capacities of Tetrapod Bucket Foundations Considering Group Effects in Undrained Clay
Applied Sciences (Switzerland), ISSN: 2076-3417, Vol: 12, Issue: 11
2022
- 1Citations
- 2Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Suction bucket foundation is a novel and cheaper foundation used in marine structures, such as offshore wind turbines, breakwater and oil platforms. Compared with a single bucket foundation, tetrapod bucket foundations can bear larger loads because of the group effects. However, the vertical, horizontal and moment capacity factors of tetrapod bucket foundations have not been presented in existing specifications. A series of three-dimensional finite-element analyses were conducted to investigate the group effects on uniaxial capacities and failure mechanisms of tetrapod bucket foundations in undrained clay considering various foundation separation distance ratios, embedment depth ratios, soil-strength heterogeneity indices and load direction angles. Generalized formulas for undrained uniaxial capacities of tetrapod bucket foundations were proposed in order to establish a bridge connecting the capacities of tetrapod bucket foundations and those of the single bucket foundation, which can provide a reference for industrial designs of capacities of tetrapod bucket foundations. The results show that the vertical group effect factor of tetrapod bucket foundations is basically not affected by the foundation separation distance ratio, embedment depth ratio, soil-strength heterogeneity index and load direction angle, which can adopted 0.9 based on a conservative estimation. The normalized horizontal and moment group effect factors of tetrapod bucket foundations are both affected by the separation distance ratio, embedment depth ratio and soil-strength heterogeneity index, but the moment group effect factor is also obviously affected by the load direction angle. The value of the horizontal and moment capacity factors of tetrapod bucket foundations are about 2.3 and 13.8 times that of a single bucket foundation, respectively, when the separation distance ratio is 3.5, embedment depth ratio is 1.0 and soil-strength heterogeneity index is 10, which have both been significantly enhanced. A value of 3.5 is suggested for the separation distance ratio to attain good capacities and a relatively high global stiffness for the tetrapod bucket foundations.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know