Jointed Rock Failure Mechanism: A Method of Heterogeneous Grid Generation for DDARF
Applied Sciences (Switzerland), ISSN: 2076-3417, Vol: 12, Issue: 12
2022
- 1Citations
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations1
- Citation Indexes1
- CrossRef1
- Mentions1
- Blog Mentions1
- Blog1
Article Description
The original DDARF (discontinuous deformation analysis for rock failure) can only generate uniform grids, and the increase in the number of grids reduces the efficiency of calculation, which limits the use of DDARF in large-scale geotechnical engineering. This is a problem that needs to be solved in the original DDARF. A new method is proposed in this paper to optimize the generation of grids in DDARF, and the optimized DDARF can generate heterogeneous grids. The model of the Brazilian disc-splitting experiment was established by using the optimized DDARF, fine grids were generated in the crack propagation region of the model, andsparse grids were generated at the edge of the model. The simulation results show that the Brazilian disc-splitting experiment simulated by the optimized DDARF is more consistent with the physical experiment than the original DDARF. The optimized DDARF and the original DDARF were used to generate a heterogeneous grid model and a uniform grid model, respectively, to simulate the uniaxial compression experiment. Through the analysis of the experimental results, it can be concluded that the optimized DDARF is more accurate in simulating the cracking and propagation of joints in rock blocks, the results of optimized DDARF are more consistent with the simulation results of other software, and the computational efficiency of the optimized DDARF simulation experiment is much higher than that of the original DDARF at the same time.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know