Using a Combination of Activated Carbon and Graphene Nanoparticles in a Consolidated Form for Adsorption Ice Maker: A System-Level Modeling
Applied Sciences (Switzerland), ISSN: 2076-3417, Vol: 12, Issue: 15
2022
- 3Citations
- 8Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Adsorption refrigeration systems are one of the emerging decarbonization technologies that can use eco-friendly heating sources and working fluids. However, the highly porous adsorbent materials used in these systems have a low thermal conductivity that hinders their system performance enhancement. Graphene nanoplatelets are proposed in the literature to improve the conductive heat transfer through the adsorbent field and the resulting composite adsorbents were favorably testified at the material level. In this study, the impact of employing a composite adsorbent that comprises of 50% activated carbon type Maxsorb III, 40% graphene nanoplatelets, and 10% binder was numerically investigated at a system level. The contradictory effects of heat and mass transfer mechanisms within the composite adsorbent on the performance of an adsorption ice production system were explored for three cases of composite layer thicknesses at different cycle times. The results showed that the maximum specific daily ice production and coefficient of performance of 33.27 kg·kg·day and 0.3046 were attained at composite thicknesses of 2 and 5 mm and cycle times of 430 and 1230 s, respectively. The higher composite thickness of 10 mm increased the mass transfer resistances, which overlooked the enhancement in the heat transfer and reduced the overall performance.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know