Comparison of Principal-Component-Analysis-Based Extreme Learning Machine Models for Boiler Output Forecasting
Applied Sciences (Switzerland), ISSN: 2076-3417, Vol: 12, Issue: 15
2022
- 11Citations
- 17Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this paper, a combined approach of Principal Component Analysis (PCA)-based Extreme Learning Machine (ELM) for boiler output forecasting in a thermal power plant is presented. The input used for this prediction model is taken from the boiler unit of the Yermarus Thermal Power Station (YTPS), India. Calculation of the accurate electrical output of a boiler in an operating system requires the knowledge of hundreds of operating parameters. The dimensionality of the input dataset is reduced by applying principal component analysis using IBM@SPSS Software. In the process of principal component analysis, a dataset of 232 parameters is standardized into 16 principal components. The total dataset collected is divided into training and testing datasets. The extreme learning machine is designed for various activation functions and the number of neurons. Sigmoid and hyperbolic tangent activation functions are studied here. Its generalization performance is examined in terms of the Mean Square Error (MSE), Mean Absolute Error (MAE), Root Mean Square (RMSE), and Mean Absolute Percentage Error (MAPE). ELM and PCA–ELM are compared. In both the ELM and PCA–ELM models, when the extreme learning machine was designed with a sigmoid activation function with 100 nodes in the hidden layer, RMSE was 5.026 and 4.730, respectively. Therefore, the developed combined approach of PCA–ELM proved as a promising technique in forecasting with reduced errors and reduced time.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know