Digital Twin Architecture Evaluation for Intelligent Fish Farm Management Using Modified Analytic Hierarchy Process
Applied Sciences (Switzerland), ISSN: 2076-3417, Vol: 13, Issue: 1
2023
- 12Citations
- 95Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Precision aquaculture deploys multi-mode sensors on a fish farm to collect fish and environmental data and form a big collection of datasets to pre-train data-driven prediction models to fully understand the aquaculture environment and fish farm conditions. These prediction models empower fish farmers for intelligent decisions, thereby providing objective information to monitor and control factors of automatic aquaculture machines and maximize farm production. This paper analyzes the requirements of a digital transformation infrastructure consisting of five-layered digital twins using extensive literature reviews. Thus, the results help realize our goal of providing efficient management and remote monitoring of aquaculture farms. The system embeds cloud-based digital twins using machine learning and computer vision, together with sensors and artificial intelligence-based Internet of Things (AIoT) technologies, to monitor fish feeding behavior, disease, and growth. However, few discussions in the literature concerning the functionality of a cost-effective digital twin architecture for aquaculture transformation are available. Therefore, this study uses the modified analytical hierarchical analysis to define the user requirements and the strategies for deploying digital twins to achieve the goal of intelligent fish farm management. Based on the requirement analysis, the constructed prototype of the cloud-based digital twin system effectively improves the efficiency of traditional fish farm management.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know