A Scientific Document Retrieval and Reordering Method by Incorporating HFS and LSD
Applied Sciences (Switzerland), ISSN: 2076-3417, Vol: 13, Issue: 20
2023
- 1Citations
- 4Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Hebei University Researchers Discuss Findings in Applied Sciences (A Scientific Document Retrieval and Reordering Method by Incorporating HFS and LSD)
2023 NOV 14 (NewsRx) -- By a News Reporter-Staff News Editor at NewsRx Science Daily -- New study results on applied sciences have been published.
Article Description
Achieving scientific document retrieval by considering the wealth of mathematical expressions and the semantic text they contain has become an inescapable trend. Current scientific document matching models focus solely on the textual features of expressions and frequently encounter hurdles like proliferative parameters and sluggish reasoning speeds in the pursuit of improved performance. To solve this problem, this paper proposes a scientific document retrieval method founded upon hesitant fuzzy sets (HFS) and local semantic distillation (LSD). Concretely, in order to extract both spatial and semantic features for each symbol within a mathematical expression, this paper introduces an expression analysis module that leverages HFS to establish feature indices. Secondly, to enhance contextual semantic alignment, the method of knowledge distillation is employed to refine the pretrained language model and establish a twin network for semantic matching. Lastly, by amalgamating mathematical expressions with contextual semantic features, the retrieval results can be made more efficient and rational. Experiments were implemented on the NTCIR dataset and the expanded Chinese dataset. The average MAP for mathematical expression retrieval results was 83.0%, and the average nDCG for sorting scientific documents was 85.8%.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know