The Calculation Method for the Horizontal Bearing Capacity of Squeezed Branch Piles Considering the Plate–Soil Nonlinear Interaction
Applied Sciences (Switzerland), ISSN: 2076-3417, Vol: 13, Issue: 24
2023
- 1Citations
- 2Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations1
- Citation Indexes1
- CrossRef1
- Mentions2
- Blog Mentions1
- Blog1
- News Mentions1
- 1
Most Recent News
New Applied Sciences Research from Anhui University of Science and Technology Described (The Calculation Method for the Horizontal Bearing Capacity of Squeezed Branch Piles Considering the Plate-Soil Nonlinear Interaction)
2024 JAN 10 (NewsRx) -- By a News Reporter-Staff News Editor at NewsRx Science Daily -- Current study results on applied sciences have been published.
Article Description
The m-method is a commonly used method to calculate the internal force and deformation of pile foundations under lateral loads. However, for squeezed branch piles, the increase in the load-bearing plate leads to changes in the pile section and the generation of a resistance bending moment under loading, which means the load–displacement relationship at the load-bearing plate will no longer satisfy the linear relationship. In this paper, a hyperbolic load transfer model is established to describe the nonlinear relationship between the soil resistance and lateral displacement at the branch of the pile, and the m-method is used for the straight section of the pile. Laboratory model tests are used to verify the correlation between theory and experimentation. The results show that the theory is consistent with the measured curve. On the basis of the theoretical calculation, the influence of the bearing plate and pile body parameters on the force of the squeezed branch pile is analyzed. The research shows that that the bearing capacity of the squeezed branch pile is improved by increasing the plate’s diameter, placing the plate closer to the ground, and ensuring that the pile top is embedded. The theoretical calculation method established in this paper can correctly and accurately reflect the bearing capacity characteristics of squeezed branch piles under horizontal loads, and it is more safe than performing measurements. Additionally, it can be applied to squeezed branch piles with different plate diameters, plate positions, plate section forms, and plate quantities as well as for piles with different boundary conditions and soil conditions. Moreover, it can also be applied to other pile shapes. This method is of significance for the analysis of the bearing characteristics of piles with variable sections under lateral loads.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know