PlumX Metrics
Embed PlumX Metrics

Deep Learning-Based Prediction of Stress and Strain Maps in Arterial Walls for Improved Cardiovascular Risk Assessment

Applied Sciences (Switzerland), ISSN: 2076-3417, Vol: 14, Issue: 1
2024
  • 2
    Citations
  • 0
    Usage
  • 11
    Captures
  • 1
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    2
  • Captures
    11
  • Mentions
    1
    • News Mentions
      1
      • News
        1

Most Recent News

New Research on Applied Sciences from Florida Institute of Technology Summarized (Deep Learning-Based Prediction of Stress and Strain Maps in Arterial Walls for Improved Cardiovascular Risk Assessment)

2024 JAN 11 (NewsRx) -- By a News Reporter-Staff News Editor at Disease Prevention Daily -- Research findings on applied sciences are discussed in a

Article Description

Conducting computational stress-strain analysis using finite element methods (FEM) is a common approach when dealing with the complex geometries of atherosclerosis, which is a leading cause of global mortality and complex cardiovascular disease. The considerable expense linked to FEM analysis encourages the substitution of FEM with a considerably faster data-driven machine learning (ML) approach. This study investigated the potential of end-to-end deep learning tools as a more effective substitute for FEM in predicting stress-strain fields within 2D cross sections of arterial walls. We first proposed a U-Net-based fully convolutional neural network (CNN) to predict the von Mises stress and strain distribution based on the spatial arrangement of calcification within arterial wall cross-sections. Further, we developed a conditional generative adversarial network (cGAN) to enhance, particularly from the perceptual perspective, the prediction accuracy of stress and strain field maps for arterial walls with various calcification quantities and spatial configurations. On top of U-Net and cGAN, we also proposed their ensemble approaches to improve the prediction accuracy of field maps further. Our dataset, consisting of input and output images, was generated by implementing boundary conditions and extracting stress-strain field maps. The trained U-Net models can accurately predict von Mises stress and strain fields, with structural similarity index scores (SSIM) of 0.854 and 0.830 and mean squared errors of 0.017 and 0.018 for stress and strain, respectively, on a reserved test set. Meanwhile, the cGAN models in a combination of ensemble and transfer learning techniques demonstrate high accuracy in predicting von Mises stress and strain fields, as evidenced by SSIM scores of 0.890 for stress and 0.803 for strain. Additionally, mean squared errors of 0.008 for stress and 0.017 for strain further support the model’s performance on a designated test set. Overall, this study developed a surrogate model for finite element analysis, which can accurately and efficiently predict stress-strain fields of arterial walls regardless of complex geometries and boundary conditions.

Bibliographic Details

Yasin Shokrollahi; Pengfei Dong; Linxia Gu; Changchun Zhou; Xianqi Li

MDPI AG

Materials Science; Physics and Astronomy; Engineering; Chemical Engineering; Computer Science

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know