Mitigation of Railway-Induced Ground Vibration by Soft Support Elements and a Higher Bending Stiffness of the Track
Applied Sciences (Switzerland), ISSN: 2076-3417, Vol: 14, Issue: 3
2024
- 2Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures2
- Readers2
- Mentions1
- Blog Mentions1
- Blog1
Article Description
The mitigation of train-induced ground vibrations by track solutions is investigated by calculations and measurements. The calculation by a wavenumber domain method includes the correct vehicle–track interaction and the correct track–soil interaction. Some theoretical results for elastic elements and an increased bending stiffness of the track are presented where the force transfer of the track and the vehicle–track interaction are calculated for the high-frequency dynamic mitigation, and the force distribution along the track is calculated for the low-frequency mitigation which is due to the smoother impulses from the passing static loads. Measurement results for the ground vibration near isolated and un-isolated tracks are given for several under-sleeper pads, for under-ballast mats, and for several under-ballast plates and ballast troughs. The elastic elements yield a resonance frequency of the vehicle–track–soil system and a high-frequency reduction of the dynamic axle loads which depends mainly on the softness of the pads or mats and which can be improved by a higher sleeper mass. In addition, all troughs and most of the soft elements show a low-frequency reduction which is attributed to the scattered impulses of the static axle loads. Besides this main contribution of the article, the problem of a soft reference section on a different soil is discussed and recommendations for better ground vibration measurements of mitigation effects are given.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know