Inverse Kinematics of Large Hydraulic Manipulator Arm Based on ASWO Optimized BP Neural Network
Applied Sciences (Switzerland), ISSN: 2076-3417, Vol: 14, Issue: 13
2024
- 2Citations
- 2Captures
- 2Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent Blog
Applied Sciences, Vol. 14, Pages 5551: Inverse Kinematics of Large Hydraulic Manipulator Arm Based on ASWO Optimized BP Neural Network
Applied Sciences, Vol. 14, Pages 5551: Inverse Kinematics of Large Hydraulic Manipulator Arm Based on ASWO Optimized BP Neural Network Applied Sciences doi: 10.3390/app14135551 Authors:
Most Recent News
Henan University of Science and Technology Researchers Publish New Study Findings on Robotics (Inverse Kinematics of Large Hydraulic Manipulator Arm Based on ASWO Optimized BP Neural Network)
2024 JUL 30 (NewsRx) -- By a News Reporter-Staff News Editor at Network Daily News -- Fresh data on robotics are presented in a new
Article Description
In order to solve the problem of insufficient end positioning accuracy due to factors such as gravity and material strength during the inverse solution process of a large hydraulic robotic arm, this paper proposes an inverse solution algorithm based on an adaptive spider wasp optimization (ASWO) optimized back propagation (BP) neural network. Firstly, the adaptability of the SWO algorithm is enhanced by analyzing the phase change in population fitness and dynamically adjusting the trade-off rate, crossover rate, and population size in real time. Then, the ASWO algorithm is used to optimize the initial weights and biases of the BP neural network, effectively addressing the problem of the BP neural network falling into local optima. Finally, a neural network mapping relationship between the actual position of the robotic arm’s end-effector and the corresponding joint values is established to reduce the influence of forward kinematic errors on the accuracy of the inverse solution. Experimental results show that the average positioning error of the robotic arm in the XYZ direction is reduced from (91.3, 87.38, 117.31) mm to (18.16, 24.67, 27.21) mm, significantly improving positioning accuracy by 80.11%, 71.78%, and 76.81%, meeting project requirements.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know