Advancing Geotechnical Evaluation of Wellbores: A Robust and Precise Model for Predicting Uniaxial Compressive Strength (UCS) of Rocks in Oil and Gas Wells
Applied Sciences (Switzerland), ISSN: 2076-3417, Vol: 14, Issue: 22
2024
- 2Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures2
- Readers2
- Mentions1
- News Mentions1
- News1
Most Recent News
Researcher at University of Calgary Releases New Study Findings on Applied Sciences [Advancing Geotechnical Evaluation of Wellbores: A Robust and Precise Model for Predicting Uniaxial Compressive Strength (UCS) of Rocks in Oil and Gas Wells]
2024 NOV 29 (NewsRx) -- By a News Reporter-Staff News Editor at NewsRx Science Daily -- New research on applied sciences is the subject of
Article Description
This study examines the efficacy of various machine learning models for predicting the uniaxial compressive strength (UCS) of rocks in oil and gas wells, which are essential for ensuring wellbore stability and optimizing drilling operations. The investigation encompasses Linear Regression, ensemble methods (including Random Forest, Gradient Boosting, XGBoost, and LightGBM), support vector machine-based regression (SVM-SVR), and multilayer perceptron artificial neural network (MLP-ANN) models. The results demonstrate that XGBoost and Gradient Boosting offer superior predictive accuracy for UCS in drillability, as indicated by low Mean Absolute Percentage Error (MAPE) values of 3.87% and 4.18%, respectively, and high R scores (0.8542 for XGBoost). These models emerge as optimal choices for UCS prediction focused on drillability, offering increased accuracy and reliability in practical engineering scenarios. Ensemble methods and MLP-ANN emerge as frontrunners, providing valuable tools for improving wellbore stability assessments, optimizing drilling parameter selection, and facilitating informed decision-making processes in oil and gas drilling operations. Moreover, this study lays a foundation for further research in drillability-centred predictive modelling for geotechnical parameters, advancing our understanding of rock behaviour under drilling conditions.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know