Stepwise luneburg lens for bloch surface waves
Applied Sciences (Switzerland), ISSN: 2076-3417, Vol: 8, Issue: 2
2018
- 5Citations
- 8Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In order to enlarge the capability for in-plane manipulation of the Bloch surface wave (BSW), we investigate 2D gradient index (GRIN) optical components using a finite-difference time-domain (FDTD) numerical method. To ease difficulties in fabrication to acquire a continuous index profile of GRIN optical components, we propose a stepwise index profile. For 2D surface wave devices, such discrete index steps can be achieved by stepwise structuring of the top layer, also called the device layer. For the demonstration of the stepwise GRIN optics concept, we consider a Luneburg lens, which is a good example of the GRIN optical component that produces a strong focal spot on the shadow-side curvature of the lens. The limited index contrast of the BSW systems loosens the confinement of the focal spot. A mitigation plan is to elongate the circular geometry to the prolate ellipse. BSW-based Luneburg lenses with a relatively small number of steps and an elliptical geometry are demonstrated with comparable performances to a standard Luneburg lens.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know