Optimization of geometric parameters of longitudinal-connected air suspension based on a double-loop multi-objective particle swarm optimization algorithm
Applied Sciences (Switzerland), ISSN: 2076-3417, Vol: 8, Issue: 9
2018
- 10Citations
- 81Usage
- 5Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations10
- Citation Indexes10
- CrossRef10
- 10
- Usage81
- Downloads74
- Abstract Views7
- Captures5
- Readers5
Article Description
Longitudinal-connected air suspension has been proven to have desirable dynamic load-sharing performances for multi-axle heavy vehicles. However, optimization approaches towards the improvement of comprehensive vehicle performance through the geometric design of longitudinal-connected air suspension have been considerably lacking. To address this, based on a 5-degrees-of-freedom nonlinear model of a three-axle semi-trailer with longitudinal air suspension, taking the changes of driving conditions (road roughness, speed, and load) into account, a height control strategy of the longitudinal-connected air suspension was proposed. Then, in view of the height of the air spring under various driving conditions, the support vector regression method was employed to fit the relationship models between the performance indices and the driving conditions, as well as the suspension geometric parameters (inside diameters of the air line and the connectors). Finally, to tackle the uncertainties of driving conditions in the optimization of suspension geometric parameters, a double-loop multi-objective particle swarm optimization algorithm (DL-MOPSO) was put forward based on the interval uncertainty theory. The simulation results indicate that compared with the longitudinal-connected air suspension using two traditional geometric parameters, the optimization ratios for dynamic load sharing coefficient and root-mean-square acceleration at various spring heights are between -1.04% and 20.75%, and 1.44% and 35.1%, respectively. Therefore, based on the signals measured from the suspension height sensors, through integrated control of inflation/deflation valves of air suspensions, as well as the valves' inside connectors and air lines, the proposed DL-MOPSO algorithm can improve the comprehensive driving performance of the longitudinal-connected three-axle semi-trailer effectively, and in response to changes in driving conditions.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85052519484&origin=inward; http://dx.doi.org/10.3390/app8091454; https://www.mdpi.com/2076-3417/8/9/1454; https://ro.uow.edu.au/eispapers1/1753; https://ro.uow.edu.au/cgi/viewcontent.cgi?article=2755&context=eispapers1; https://dx.doi.org/10.3390/app8091454
MDPI AG
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know