Short-term load forecasting based on elastic net improved GMDH and difference degree weighting optimizations
Applied Sciences (Switzerland), ISSN: 2076-3417, Vol: 8, Issue: 9
2018
- 24Citations
- 28Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
As objects of load prediction are becoming increasingly diversified and complicated, it is extremely important to improve the accuracy of load forecasting under complex systems. When using the group method of data handling (GMDH), it is easy for the load forecasting to suffer from overfitting and be unable to deal with multicollinearity under complex systems. To solve this problem, this paper proposes a GMDH algorithm based on elastic net regression, that is, group method of data handling based on elastic net (EN-GMDH), as a short-term load forecasting model. The algorithm uses an elastic net to compress and punish the coefficients of the Kolmogorov-Gabor (K-G) polynomial and select variables. Meanwhile, based on the difference degree of historical data, this paper carries out variable weight processing on the input data of load forecasting, so as to solve the impact brought by the abrupt change of load law. Ten characteristic variables, including meteorological factors, meteorological accumulation factors, and holiday factors, are taken as input variables. Then, EN-GMDH is used to establish the relationship between the characteristic variables and the load, and a short-term load forecasting model is established. The results demonstrate that, compared with other algorithms, the evaluation index of EN-GMDH is significantly better than that of the rest algorithm models in short-term load forecasting, and the accuracy of prediction is obviously improved.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know