PlumX Metrics
Embed PlumX Metrics

Distributed Bragg reflectors for GaN-based vertical-cavity surface-emitting lasers

Applied Sciences (Switzerland), ISSN: 2076-3417, Vol: 9, Issue: 8
2019
  • 61
    Citations
  • 0
    Usage
  • 59
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    61
    • Citation Indexes
      60
    • Patent Family Citations
      1
      • Patent Families
        1
  • Captures
    59

Review Description

Adistributed Bragg reflector (DBR) is a key building block in the formation of semiconductor microcavities and vertical cavity surface emitting lasers (VCSELs). The success in epitaxial GaAs DBR mirrors paved the way for the ubiquitous deployment of III-V VCSELs in communication and mobile applications. However, a similar development of GaN-based blue VCSELs has been hindered by challenges in preparing DBRs that are mass producible. In this article, we provide a review of the history and current status of forming DBRs for GaN VCSELs. In general, the preparation of DBRs requires an optimization of epitaxy/fabrication processes, together with trading off parameters in optical, electrical, and thermal properties. The effort of epitaxial DBRs commenced in the 1990s and has evolved from using AlGaN, AlN, to using lattice-matched AlInN with GaN for DBRs. In parallel, dielectric DBRs have been studied since 2000 and have gone through a few design variations including epitaxial lateral overgrowth (ELO) and vertical external cavity surface emitting lasers (VECSEL). A recent trend is the use of selective etching to incorporate airgap or nanoporous GaN as low-index media in an epitaxial GaN DBR structure. The nanoporous GaN DBR represents an offshoot from the traditional epitaxial approach and may provide the needed flexibility in forming manufacturable GaN VCSELs. The trade-offs and limitations of each approach are also presented.

Bibliographic Details

Cheng Zhang; Rami ElAfandy; Jung Han

MDPI AG

Materials Science; Physics and Astronomy; Engineering; Chemical Engineering; Computer Science

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know