Methane detection based on improved chicken algorithm optimization support vector machine
Applied Sciences (Switzerland), ISSN: 2076-3417, Vol: 9, Issue: 9
2019
- 10Citations
- 11Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Methane, known as a flammable and explosion hazard gas, is the main component of marsh gas, firedamp, and rock gas. Therefore, it is important to be able to detect methane concentration safely and effectively. At present, many models have been proposed to enhance the performance of methane predictions. However, the traditional models displayed inevitable shortcomings in parameter optimization in our experiment, which resulted in their having poor prediction performance. Accordingly, the improved chicken swarm algorithm optimized support vector machine (ICSO-SVM) was proposed to predict the concentration of methane precisely. The traditional chicken swarm optimization algorithm (CSO) easily falls into a local optimum due to its characteristics, so the ICSO algorithm was developed. The formula for position updating of the chicks of the ICSO is not only about the rooster of the same subgroup, but also about the roosters of other subgroups. Therefore, the ICSO algorithm more easily avoids falling into the local extremum. In this paper, the following work has been done. The sample data were obtained by using the methane detection system designed by us; In order to verify the validity of the ICSO algorithm, the ICSO, CSO, genetic algorithm (GA), and particle swarm optimization algorithm (PSO) algorithms were tested, and the four models were applied for methane concentration prediction. The results showed that he ICSO algorithm had the best convergence effect, relative error percentage, and average mean squared error, when the four models were applied to predict methane concentration. The results showed that the average mean squared error values of ICSO-SVM model were smaller than other three models, and that the ICSO-SVM model has better stability, and the average recovery rate of the ICSO-SVM is much closer to 100%. Therefore, the ICSO-SVM model can efficiently predict methane concentration.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know