Beyond mirkwood: Enhancing SED Modeling with Conformal Predictions
Astronomy, ISSN: 2674-0346, Vol: 3, Issue: 1, Page: 14-20
2024
- 5Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures5
- Readers5
Article Description
Traditional spectral energy distribution (SED) fitting techniques face uncertainties due to assumptions in star formation histories and dust attenuation curves. We propose an advanced machine learning-based approach that enhances flexibility and uncertainty quantification in SED fitting. Unlike the fixed NGBoost model used in mirkwood, our approach allows for any scikit-learn-compatible model, including deterministic models. We incorporate conformalized quantile regression to convert point predictions into error bars, enhancing interpretability and reliability. Using CatBoost as the base predictor, we compare results with and without conformal prediction, demonstrating improved performance using metrics such as coverage and interval width. Our method offers a more versatile and accurate tool for deriving galaxy physical properties from observational data.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know