Deep Learning for Predicting Winter Temperature in North China
Atmosphere, ISSN: 2073-4433, Vol: 13, Issue: 5
2022
- 4Citations
- 5Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
It is difficult to improve the seasonal prediction skill of winter temperature over North China, owing to the complex dynamics of East Asian winter and the relatively low prediction skill level of current climate models. Deep learning (DL) may be an informative and promising tool to enhance seasonal prediction, particularly in regions where the underlying mechanisms are not clear. Here, using a DL model based on the Convolutional Neural Network (CNN), we have found that the prediction skill for North China winter temperature (NCWT) can be extended up to five months by considering the remote impact of the Northeast Pacific sea-surface temperature (SST) on North China. Based on historical simulations of winter temperatures in North China, we selected six CMIP5 models with relatively small deviations for training the CNN, and the period chosen for training was 1852–1991. The ERA5 data during 1995–2017 were utilized to evaluate the performance of the CNN. Our CNN shows the best performance in a recent 10-year period (2008–2017), showing a significantly improved level of NCWT prediction skill with a correlation skill of 0.65 at a 5-month lead time, which is much better than the forecast skill of the state-of-the-art dynamic seasonal prediction system. Heat map analysis was used to explore the possible physical mechanisms associated with the NCWT anomaly from the perspective of the CNN; the results showed that the SST over the Northeast Pacific is highly relevant to NCWT prediction. The Northeast Pacific warming in the boreal summer is related to the development of the El Niño event in the coming winter, which may induce NCWT anomalies by atmospheric teleconnection. Climate model experiments support the role of Northeast Pacific warming in the boreal summer on NCWT. The improved capability for prediction from using the CNN may help to establish the energy policy for the coming winter and reduce the economic losses from extremely cold in North China.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know