DBSCAN SMOTE LSTM: Effective Strategies for Distributed Denial of Service Detection in Imbalanced Network Environments
Big Data and Cognitive Computing, ISSN: 2504-2289, Vol: 8, Issue: 9
2024
- 3Citations
- 17Captures
- 2Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent Blog
BDCC, Vol. 8, Pages 118: DBSCAN SMOTE LSTM: Effective Strategies for Distributed Denial of Service Detection in Imbalanced Network Environments
BDCC, Vol. 8, Pages 118: DBSCAN SMOTE LSTM: Effective Strategies for Distributed Denial of Service Detection in Imbalanced Network Environments Big Data and Cognitive Computing
Article Description
In detecting Distributed Denial of Service (DDoS), deep learning faces challenges and difficulties such as high computational demands, long training times, and complex model interpretation. This research focuses on overcoming these challenges by proposing an effective strategy for detecting DDoS attacks in imbalanced network environments. This research employed DBSCAN and SMOTE to increase the class distribution of the dataset by allowing models using LSTM to learn time anomalies effectively when DDoS attacks occur. The experiments carried out revealed significant improvement in the performance of the LSTM model when integrated with DBSCAN and SMOTE. These include validation loss results of 0.048 for LSTM DBSCAN and SMOTE and 0.1943 for LSTM without DBSCAN and SMOTE, with accuracy of 99.50 and 97.50. Apart from that, there was an increase in the F1 score from 93.4% to 98.3%. This research proved that DBSCAN and SMOTE can be used as an effective strategy to improve model performance in detecting DDoS attacks on heterogeneous networks, as well as increasing model robustness and reliability.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know