Electroencephalography-Based Motor Imagery Classification Using Multi-Scale Feature Fusion and Adaptive Lasso
Big Data and Cognitive Computing, ISSN: 2504-2289, Vol: 8, Issue: 12
2024
- 7Captures
- 2Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures7
- Readers7
- Mentions2
- Blog Mentions1
- Blog1
- News Mentions1
- News1
Most Recent Blog
BDCC, Vol. 8, Pages 169: Electroencephalography-Based Motor Imagery Classification Using Multi-Scale Feature Fusion and Adaptive Lasso
BDCC, Vol. 8, Pages 169: Electroencephalography-Based Motor Imagery Classification Using Multi-Scale Feature Fusion and Adaptive Lasso Big Data and Cognitive Computing doi: 10.3390/bdcc8120169 Authors: Shimiao
Most Recent News
Research on Big Data and Cognitive Computing Discussed by a Researcher at Fujian Agriculture and Forestry University (Electroencephalography-Based Motor Imagery Classification Using Multi-Scale Feature Fusion and Adaptive Lasso)
2024 DEC 06 (NewsRx) -- By a News Reporter-Staff News Editor at Health & Medicine Daily -- Researchers detail new data in big data and
Article Description
Brain–computer interfaces, where motor imagery electroencephalography (EEG) signals are transformed into control commands, offer a promising solution for enhancing the standard of living for disabled individuals. However, the performance of EEG classification has been limited in most studies due to a lack of attention to the complementary information inherent at different temporal scales. Additionally, significant inter-subject variability in sensitivity to biological motion poses another critical challenge in achieving accurate EEG classification in a subject-dependent manner. To address these challenges, we propose a novel machine learning framework combining multi-scale feature fusion, which captures global and local spatial information from different-sized EEG segmentations, and adaptive Lasso-based feature selection, a mechanism for adaptively retaining informative subject-dependent features and discarding irrelevant ones. Experimental results on multiple public benchmark datasets revealed substantial improvements in EEG classification, achieving rates of 81.36%, 75.90%, and 68.30% for the BCIC-IV-2a, SMR-BCI, and OpenBMI datasets, respectively. These results not only surpassed existing methodologies but also underscored the effectiveness of our approach in overcoming specific challenges in EEG classification. Ablation studies further confirmed the efficacy of both the multi-scale feature analysis and adaptive selection mechanisms. This framework marks a significant advancement in the decoding of motor imagery EEG signals, positioning it for practical applications in real-world BCIs.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know