Kir4.2 Potassium Channels in Retinal Pigment Epithelial Cells In Vitro: Contribution to Cell Viability and Proliferation, and Down-Regulation by Vascular Endothelial Growth Factor
Biomolecules, ISSN: 2218-273X, Vol: 12, Issue: 6
2022
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures2
- Readers2
Article Description
Dedifferentiation and proliferation of retinal pigment epithelial (RPE) cells are characteristics of retinal diseases. Dedifferentiation is likely associated with changes of inwardly rectifying potassium (Kir) channels. The roles of Kir4.2 channels in viability, and proliferation of cultured RPE cells were investigated. Gene expression levels were determined using qRT-PCR. RPE cells expressed Kir2.1, 2.2, 2.4, 3.2, 4.1, 4.2, 6.1, and 7.1 mRNA. Kir4.2 protein was verified by immunocytochemistry and Western blotting. Kir4.2 mRNA in cultured cells was upregulated by hypoxia (hypoxia mimetic CoCl or 0.2% O) and extracellular hyperosmolarity (addition of high NaCl or sucrose). Kir4.2 mRNA was suppressed by vascular endothelial growth factor (VEGF), blood serum, and thrombin whereas platelet-derived growth factor (PDGF), basic fibroblast growth factor (bFGF), and transforming growth factor-β1 (TGF-β1) increased it. Hyperosmotic Kir4.2 gene expression was mediated by TGF-β1 receptor signaling while hypoxic gene transcription was dependent on PDGF receptor signaling. VEGF receptor-2 blockade increased Kir4.2 mRNA level under control, hyperosmotic, and hypoxic conditions. SiRNA-mediated knockdown of Kir4.2 decreased the cell viability and proliferation under control and hyperosmotic conditions. Kir4.2 channels play functional roles in maintaining the viability and proliferation of RPE cells. Downregulation of Kir4.2 by VEGF, via activation of VEGF receptor-2 and induction of blood-retinal barrier breakdown, may contribute to decreased viability of RPE cells under pathological conditions.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know