PlumX Metrics
Embed PlumX Metrics

The Sympathetic Nervous System Regulates Sodium Glucose Co-Transporter 1 Expression in the Kidney

Biomedicines, ISSN: 2227-9059, Vol: 11, Issue: 3
2023
  • 3
    Citations
  • 0
    Usage
  • 1
    Captures
  • 2
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Most Recent News

University of Western Australia Researcher Releases New Study Findings on Hypertension (The Sympathetic Nervous System Regulates Sodium Glucose Co-Transporter 1 Expression in the Kidney)

2023 MAR 23 (NewsRx) -- By a News Reporter-Staff News Editor at Proteomics Daily -- Investigators publish new report on hypertension. According to news reporting

Article Description

Hyperactivation of the sympathetic nervous system (SNS) has been demonstrated in various conditions including obesity, hypertension and type 2 diabetes. Elevated levels of the major neurotransmitter of the SNS, norepinephrine (NE), is a cardinal feature of these conditions. Increased levels of the sodium glucose cotransporter 1 (SGLT1) protein have been shown to occur in the parotid and submandibular glands of hypertensive rodents compared to normotensive controls. However, there was a need to examine SGLT1 expression in other tissues, such as the kidneys. Whether NE may directly affect SGLT1 protein expression has not yet been investigated, although such a link has been shown for sodium glucose cotransporter 2 (SGLT2). Hence, we aimed to determine (i) whether our murine model of neurogenic hypertension displays elevated renal SGLT1 expression and (ii) whether NE may directly promote elevations of SGLT1 in human proximal tubule (HK2) cells. We did indeed demonstrate that in vivo, in our mouse model of neurogenic hypertension, hyperactivation of the SNS promotes SGLT1 expression in the kidneys. In subsequent in vitro experiments in HK2 cells, we found that NE increased SGLT1 protein expression and translocation as assessed by both specific immunohistochemistry and/or a specific SGLT1 ELISA. Additionally, NE promoted a significant elevation in interleukin-6 (IL-6) levels which resulted in the promotion of SGLT1 expression and proliferation in HK2 cells. Our findings suggest that the SNS upregulates SGLT1 protein expression levels with potential adverse consequences for cardiometabolic control. SGLT1 inhibition may therefore provide a useful therapeutic target in conditions characterized by increased SNS activity, such as chronic kidney disease.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know