Mometasone Furoate Inhibits the Progression of Head and Neck Squamous Cell Carcinoma via Regulating Protein Tyrosine Phosphatase Non-Receptor Type 11
Biomedicines, ISSN: 2227-9059, Vol: 11, Issue: 10
2023
- 2Citations
- 1Captures
- 2Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations2
- Citation Indexes2
- Captures1
- Readers1
- Mentions2
- Blog Mentions1
- Blog1
- News Mentions1
- News1
Most Recent News
Reports from Peking University School and Hospital of Stomatology Advance Knowledge in Head and Neck Cancer (Mometasone Furoate Inhibits the Progression of Head and Neck Squamous Cell Carcinoma via Regulating Protein Tyrosine Phosphatase ...)
2023 OCT 06 (NewsRx) -- By a News Reporter-Staff News Editor at Cancer Daily -- New study results on head and neck cancer have been
Article Description
Mometasone furoate (MF) is a kind of glucocorticoid with extensive pharmacological actions, including inhibiting tumor progression; however, the role of MF in head and neck squamous cell carcinoma (HNSCC) is still unclear. This study aimed to evaluate the inhibitory effect of MF against HNSCC and investigate its underlying mechanisms. Cell viability, colony formation, cell cycle and cell apoptosis were analyzed to explore the effect of MF on HNSCC cells. A xenograft study model was used to investigate the effect of MF on HNSCC in vivo. The core targets of MF for HNSCC were identified using network pharmacology analysis, TCGA database analysis and real-time PCR. Molecular docking was performed to determine the binding energy. Protein tyrosine phosphatase non-receptor type 11 (PTPN11)-overexpressing cells were constructed, and then, the cell viability and the expression levels of proliferation- and apoptosis-related proteins were detected after treatment with MF to explore the role of PTPN11 in the inhibitory effect of MF against HNSCC. After cells were treated with MF, cell viability and the number of colonies were decreased, the cell cycle was arrested and cell apoptosis was increased. The xenograft study results showed that MF could inhibit cell proliferation via promoting cell apoptosis in vivo. PTPN11 was shown to be the core target of MF against HNSCC via network pharmacology analysis, TCGA database analysis and real-time PCR. The molecular docking results revealed that PTPN11 exhibited the strongest ability to bind to MF. Finally, MF could attenuate the effects of increased cell viability and decreased cell apoptosis caused by PTPN11 overexpression, suggesting that MF can inhibit the progression of HNSCC by regulating PTPN11. MF targeted PTPN11, promoting cell cycle arrest and cell apoptosis, and consequently exerting effective anti-tumor activity.
Bibliographic Details
MDPI AG
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know