MLS-Net: An Automatic Sleep Stage Classifier Utilizing Multimodal Physiological Signals in Mice
Biosensors, ISSN: 2079-6374, Vol: 14, Issue: 8
2024
- 9Captures
- 2Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures9
- Readers9
- Mentions2
- Blog Mentions1
- Blog1
- News Mentions1
- News1
Most Recent Blog
Biosensors, Vol. 14, Pages 406: MLS-Net: An Automatic Sleep Stage Classifier Utilizing Multimodal Physiological Signals in Mice
Biosensors, Vol. 14, Pages 406: MLS-Net: An Automatic Sleep Stage Classifier Utilizing Multimodal Physiological Signals in Mice Biosensors doi: 10.3390/bios14080406 Authors: Chengyong Jiang Wenbin Xie
Article Description
Over the past decades, feature-based statistical machine learning and deep neural networks have been extensively utilized for automatic sleep stage classification (ASSC). Feature-based approaches offer clear insights into sleep characteristics and require low computational power but often fail to capture the spatial–temporal context of the data. In contrast, deep neural networks can process raw sleep signals directly and deliver superior performance. However, their overfitting, inconsistent accuracy, and computational cost were the primary drawbacks that limited their end-user acceptance. To address these challenges, we developed a novel neural network model, MLS-Net, which integrates the strengths of neural networks and feature extraction for automated sleep staging in mice. MLS-Net leverages temporal and spectral features from multimodal signals, such as EEG, EMG, and eye movements (EMs), as inputs and incorporates a bidirectional Long Short-Term Memory (bi-LSTM) to effectively capture the spatial–temporal nonlinear characteristics inherent in sleep signals. Our studies demonstrate that MLS-Net achieves an overall classification accuracy of 90.4% and REM state precision of 91.1%, sensitivity of 84.7%, and an F1-Score of 87.5% in mice, outperforming other neural network and feature-based algorithms in our multimodal dataset.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know