Research on Carbon Emission of Prefabricated Structure in China
Buildings, ISSN: 2075-5309, Vol: 13, Issue: 5
2023
- 3Citations
- 10Captures
- 2Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
New Building Construction Findings from Hunan University Published (Research on Carbon Emission of Prefabricated Structure in China)
2023 JUN 08 (NewsRx) -- By a News Reporter-Staff News Editor at Climate Change Daily News -- Researchers detail new data in building construction. According
Article Description
The comparison of carbon emissions between prefabricated and traditional cast-in-place construction methods in actual example buildings has yielded inconsistent results due to the difficulty in accounting for design parameter uncertainty. Additionally, the carbon-reduction capacity of prefabricated structures remains a topic of debate. This paper investigates the carbon emission reduction capacity of prefabricated concrete frame structures compared to traditional cast-in-place structures, with a focus on addressing design parameter uncertainty. A quantitative model of carbon emissions is established using the subproject quota method and PKPM-PC software. The study evaluates the impact of design parameters, such as slab span and seismic requirements, and calculation parameters, such as carbon emission factor and transport distance, on carbon emissions. The results indicate that prefabricated structures with a higher assembly rate exhibit a stronger emission reduction capacity, mainly due to lower demands for labor and mechanical energy consumption. The study also highlights that prefabricated structures with smaller slab spans and higher seismic requirements have lower carbon emission reduction capacities and can produce greater carbon emissions than cast-in-place structures. Furthermore, the appropriate carbon emission factor for the material used in prefabricated structures is crucial for achieving reliable carbon reduction rates. Finally, the study emphasizes the importance of considering transport as a small but significant factor in structural comparison, as changes in transport distance can significantly impact results.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know