FE modelling of the seismic behavior of wide beam-column joints strengthened with CFRP systems
Buildings, ISSN: 2075-5309, Vol: 8, Issue: 2
2018
- 26Citations
- 43Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A large share of reinforced concrete (RC) framed buildings is provided with wide beams being a type of beam allowing greater freedom in the architectural arrangement of interiors, beyond further advantage due to fewer formworks needed during the construction. Nevertheless, little attention has been devoted to the seismic vulnerability of this kind of framed RC buildings as well as to the study of strengthening systems purposely developed for wide beams and wide beam-column connections. Under these premises, this paper proposes simple strengthening solutions made by Fibre Reinforced Polymers (FRP) systems able to effectively improve seismic capacity through feasible arrangement suitable in case a wide beam is present. On the basis of wide beam-column joints previously tested without strengthening system, detailed nonlinear finite element models were calibrated. Then, an FRP strengthening intervention based on a brand new arrangement was modeled in order to perform additional simulations under seismic actions. This way, the effectiveness of the strengthening intervention was assessed finding out that significant strength and ductility increments were achieved with a relatively simple and cheap strengthening arrangement. Additional research would be desirable in the form of experimental tests on the simulated wide beam-column joints.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know