Dynamic thromboembolic risk modelling to target appropriate preventative strategies for patients with non-small cell lung cancer
Cancers, ISSN: 2072-6694, Vol: 11, Issue: 1
2019
- 36Citations
- 30Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations36
- Citation Indexes36
- 36
- CrossRef33
- Captures30
- Readers30
- 30
Article Description
Prevention of cancer-associated thromboembolism (TE) remains a significant clinical challenge and priority world-wide safety initiative. In this prospective non-small cell lung cancer (NSCLC) cohort, longitudinal TE risk profiling (clinical and biomarker) was undertaken to develop risk stratification models for targeted TE prevention. These were compared with published models from Khorana, CATS, PROTECHT, CONKO, and CATS/MICA. The NSCLC cohort of 129 patients, median follow-up 22.0 months (range 5.6-31.3), demonstrated a hypercoagulable profile in <75% patients and TE incidence of 19%. High TE risk patients were those receiving chemotherapy with baseline fibrinogen ≤ 4 g/L and d-dimer ≤ 0.5 mg/L; or baseline d-dimer ≤ 1.5 mg/L; or month 1 d-dimer ≤ 1.5 mg/L. The model predicted TE with 100% sensitivity and 34% specificity (c-index 0.67), with TE incidence 27% vs. 0% for high vs. low-risk. A comparison using the Khorana, PROTECHT, and CONKO methods were not discriminatory; TE incidence 17-25% vs. 14-19% for high vs. low-risk (c-index 0.51-0.59). Continuous d-dimer (CATS/MICA model) was also not predictive of TE. Independent of tumour stage, high TE risk was associated with cancer progression (HR 1.9, p = 0.01) and mortality (HR 2.2, p = 0.02). The model was tested for scalability in a prospective gastrointestinal cancer cohort with equipotency demonstrated; 80% sensitivity and 39% specificity. This proposed TE risk prediction model is simple, practical, potent and can be used in the clinic for real-time, decision-making for targeted thromboprophylaxis. Validation in a multicentre randomised interventional study is underway (ACTRN12618000811202).
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know