PlumX Metrics
Embed PlumX Metrics

Realization of osteolysis, angiogenesis, immunosuppression, and drug resistance by extracellular vesicles: Roles of rnas and proteins in their cargoes and of ectonucleotidases of the immunosuppressive adenosinergic noncanonical pathway in the bone marrow niche of multiple myeloma

Cancers, ISSN: 2072-6694, Vol: 13, Issue: 12
2021
  • 11
    Citations
  • 0
    Usage
  • 14
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Review Description

Angiogenesis and immunosuppression promote multiple myeloma (MM) development, and osteolysis is a primary feature of MM. Although immunomodulatory drugs and proteasome inhibitors (PIs) markedly improve the survival of patients with MM, this disease remains incurable. In the bone marrow niche, a chain of ectoenzymes, including CD38, produce immunosuppressive adenosine, inhibiting T cell proliferation as well as immunosuppressive cells. Therefore, anti-CD38 antibodies targeting myeloma cells have the potential to restore T cell responses to myeloma cells. Meanwhile extracellular vesicles (EVs) containing microRNAs, proteins such as cytokines and chemokines, long noncoding RNAs, and PIWI-interacting RNAs have been shown to act as communication tools in myeloma cell/microenvironment interactions. Via EVs, mesenchymal stem cells allow myeloma cell dissemination and confer PI resistance, whereas myeloma cells promote angiogenesis, myeloid-derived suppressor cell proliferation, and osteoclast differentiation and inhibit osteoblast differentiation. In this review, to understand key processes of MM development involving communication between myeloma cells and other cells in the tumor microenvironment, EV cargo and the non-canonical adenosinergic pathway are introduced, and ectoenzymes and EVs are discussed as potential druggable targets for the treatment of MM patients.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know