The Evolution of Ovarian Carcinoma Subclassification
Cancers, ISSN: 2072-6694, Vol: 14, Issue: 2
2022
- 56Citations
- 245Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations56
- Citation Indexes55
- 55
- CrossRef46
- Policy Citations1
- Policy Citation1
- Captures245
- Readers245
- 245
Review Description
The phenotypically informed histotype classification remains the mainstay of ovarian carcinoma subclassification. Histotypes of ovarian epithelial neoplasms have evolved with each edition of the WHO Classification of Female Genital Tumours. The current fifth edition (2020) lists five principal histotypes: high-grade serous carcinoma (HGSC), low-grade serous carcinoma (LGSC), mucinous carcinoma (MC), endometrioid carcinoma (EC) and clear cell carcinoma (CCC). Since histotypes arise from different cells of origin, cell lineage-specific diagnostic immunohistochemical markers and histotype-specific oncogenic alterations can confirm the morphological diagnosis. A four-marker immunohistochemical panel (WT1/p53/napsin A/PR) can distinguish the five principal histotypes with high accuracy, and additional immunohistochemical markers can be used depending on the diagnostic considerations. Histotypes are further stratified into molecular subtypes and assessed with predictive biomarker tests. HGSCs have recently been subclassified based on mechanisms of chromosomal instability, mRNA expression profiles or individual candidate biomarkers. ECs are composed of the same molecular subtypes (POLE-mutated/mismatch repair-deficient/no specific molecular profile/p53-abnormal) with the same prognostic stratification as their endometrial coun-terparts. Although methylation analyses and gene expression and sequencing showed at least two clusters, the molecular subtypes of CCCs remain largely elusive to date. Mutational and immuno-histochemical data on LGSC have suggested five molecular subtypes with prognostic differences. While our understanding of the molecular composition of ovarian carcinomas has significantly advanced and continues to evolve, the need for treatment options suitable for these alterations is becoming more obvious. Further preclinical studies using histotype-defined and molecular subtype-characterized model systems are needed to expand the therapeutic spectrum for women diagnosed with ovarian carcinomas.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know