Development of ftir spectroscopy methodology for characterization of boron species in fcc catalysts
Catalysts, ISSN: 2073-4344, Vol: 10, Issue: 11, Page: 1-11
2020
- 29Citations
- 58Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Fluid Catalytic Cracking (FCC) has maintained its crucial role in refining decades after its initial introduction owing to the flexibility it has as a process as well as the developments in its key enabler, the FCC catalyst. Boron-based technology (BBT) for passivation of contaminant metals in FCC catalysts represents one such development. In this contribution we describe Fourier Transform Infrared Spectroscopy (FTIR) characterization of boron-containing catalysts to identify the phase and structural information of boron. We demonstrate that FTIR can serve as a sensitive method to differentiate boron trioxide and borate structures with a detection limit at the 1000 ppm level. The FTIR analysis validates that the boron in the FCC catalysts studied are in the form of small borate units and confirms that the final FCC catalyst product contains no detectable isolated boron trioxide phase. Since boron trioxide is regulated in some parts of the world, this novel FTIR methodology can be highly beneficial for further FCC catalyst development and its industrial application at refineries around the world. This new method can also be applied on systems beyond catalysts, since the characterization of boron-containing materials is needed for a wide range of other applications in the fields of glass, ceramics, semiconductors, agriculture, and pharmaceuticals.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know