PlumX Metrics
Embed PlumX Metrics

Development of ftir spectroscopy methodology for characterization of boron species in fcc catalysts

Catalysts, ISSN: 2073-4344, Vol: 10, Issue: 11, Page: 1-11
2020
  • 29
    Citations
  • 0
    Usage
  • 58
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    29
    • Citation Indexes
      29
  • Captures
    58

Article Description

Fluid Catalytic Cracking (FCC) has maintained its crucial role in refining decades after its initial introduction owing to the flexibility it has as a process as well as the developments in its key enabler, the FCC catalyst. Boron-based technology (BBT) for passivation of contaminant metals in FCC catalysts represents one such development. In this contribution we describe Fourier Transform Infrared Spectroscopy (FTIR) characterization of boron-containing catalysts to identify the phase and structural information of boron. We demonstrate that FTIR can serve as a sensitive method to differentiate boron trioxide and borate structures with a detection limit at the 1000 ppm level. The FTIR analysis validates that the boron in the FCC catalysts studied are in the form of small borate units and confirms that the final FCC catalyst product contains no detectable isolated boron trioxide phase. Since boron trioxide is regulated in some parts of the world, this novel FTIR methodology can be highly beneficial for further FCC catalyst development and its industrial application at refineries around the world. This new method can also be applied on systems beyond catalysts, since the characterization of boron-containing materials is needed for a wide range of other applications in the fields of glass, ceramics, semiconductors, agriculture, and pharmaceuticals.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know